Nguồn gốc và trạng thái hiện tại Nguyên_tử

Nguyên tử chiếm khoảng 4,9% tổng mật độ năng lượng trong Vũ trụ quan sát được[117] (còn lại là vật chất tốinăng lượng tối), với mật độ trung bình khoảng 0,25 nguyên tử/m3.[118] Trong một thiên hà như Ngân Hà, nguyên tử có độ tập trung cao hơn, với mật độ vật chất bên trong môi trường liên sao (ISM) từ 105 đến 109 nguyên tử/m3.[119] Mặt Trời nằm trong Bong bóng địa phương, một vùng tập trung khí ion hóa cao, do vậy mật độ ở môi trường lân cận hệ Mặt Trời trung bình vào khoảng 103 nguyên tử/m3.[120] Các ngôi sao hình thành từ những đám mây đậm đặc trong ISM, và quá trình tiến hóa của sao dần dần làm giàu môi trường trong ISM với các nguyên tố nặng hơn hiđrô và heli. Có tới 95% nguyên tử trong Ngân Hà tập trung bên trong các ngôi sao và tổng khối lượng nguyên tử chiếm khoảng 10% khối lượng toàn thiên hà.[121] (phần khối lượng còn lại đa số là vật chất tối.)[122]

Sự hình thành

Electron tồn tại trong Vũ trụ từ giai đoạn sơ khai sau Vụ nổ lớn. Hạt nhân nguyên tử hình thành trong các phản ứng tổng hợp hạt nhân. Quá trình tổng hợp hạt nhân sau Vụ nổ lớn tạo ra phần lớn heli, liti, và deuteri trong Vũ trụ, và có lẽ là berilibo.[123][124][125]

Sự tồn tại khắp nơi và tính ổn định của nguyên tử dựa trên năng lượng liên kết của nó, có nghĩa là nguyên tử có năng lượng thấp hơn so với một hệ không liên kết gồm hạt nhân và các electron. Khi nhiệt độ cao hơn năng lượng ion hóa nguyên tử, vật chất tồn tại ở trạng thái plasma – chất khí chứa ion điện tích dương (hoặc thậm chí cả hạt nhân trần trụi) và electron. Khi nhiệt độ giảm xuống dưới mức năng lượng ion hóa, các nguyên tử bắt đầu hình thành theo các định luật của vật lý thống kê. Nguyên tử (khi đã bắt các electron) trở lên vượt trội so với các hạt tích điện sau 380.000 năm từ Big Bang— một kỷ nguyên gọi là "tái kết hợp", khi Vũ trụ giãn nở ra và lạnh đi cho phép các electron gắn kết được với hạt nhân.[126]

Do Vụ nổ lớn không sinh ra cacbon hoặc nguyên tử nặng hơn, hạt nhân nguyên tử được sản sinh trong lòng các ngôi sao thông qua phản ứng tổng hợp hạt nhân để tạo ra nhiều nguyên tố heli hơn, và (thông qua quá trình bộ ba heli) sản sinh ra các nguyên tố cacbon cho tới sắt;[127] xem thêm tổng hợp hạt nhân sao.

Những loại đồng vị như liti-6, cũng như một số đồng vị berilli và bo sản sinh trong không gian thông qua phản ứng bắn phá của tia vũ trụ.[128] Khi chùm tia proton năng lượng cao va đập vào hạt nhân nguyên tử trong khí quyển Trái Đất, khiến cho một lượng lớn số hạt nhân nhẹ sinh ra.

Những nguyên tố nặng hơn sắt hình thành trong vụ nổ siêu tân tinh thông qua quá trình-r (r-process) và trong các sao nhánh tiệm cận khổng lồ (AGB stars) thông qua quá trình-s (s-process), cả hai quá trình có sự bắt neutron của hạt nhân nguyên tử.[129] Những nguyên tố như chì hình thành từ sản phẩm của quá trình phân rã phóng xạ của các nguyên tố nặng hơn như urani.[130]

Trái Đất

Băng ở Nam bán cầu, trạng thái của nước đóng băng.

Hầu hết các nguyên tử cấu tạo nên Trái Đất và những thứ tồn tại trên nó đã có mặt trong những tinh vân suy sụp hấp dẫn từ đám mây phân tử để hình thành lên Hệ Mặt Trời. Một số hạt nhân còn lại là sản phẩm của quá trình phân rã, và khi đo được tỷ lệ có mặt của chúng các nhà khoa học có thể xác định được tuổi của Trái Đất thông qua định tuổi bằng đồng vị phóng xạ.[131][132] Hầu hết heli trong lớp vỏ Trái Đất (khoảng 99% khí heli xuất hiện trong các giếng khai thác khí đốt, và một lượng nhỏ heli-3) là sản phẩm của phản ứng phân rã alpha.[133]

Một vài dấu vết của một số đồng vị nguyên tử trên Trái Đất không có mặt lúc hình thành hệ Mặt Trời (hay không phải là "nguyên thủy"), hay là sản phẩm của quá trình phân rã. Cacbon-14 liên tục được sinh ra từ tia vũ trụ trong khí quyển.[134] Một số nguyên tử trên Trái Đất sinh ra từ các máy gia tốc hay trong lò phản ứng hạt nhân hoặc các vụ thử nghiệm vũ khí nguyên tử.[135][136] Trong các nguyên tố siêu urani—với số nguyên tử lớn hơn 92—chỉ có plutonineptuni xuất hiện trong tự nhiên trên Trái Đất.[137][138] Các nguyên tố siêu urani có chu kỳ phân rã phóng xạ ngắn hơn tuổi của Trái Đất [139] và do vậy nếu chúng hình thành nguyên thủy thì cũng đã bị phân rã từ lâu, ngoại trừ có một ít plutoni-244 xuất hiện trong bụi vũ trụ.[140] Nguyên tố plutoni và neptuni có trong tự nhiên chủ yếu là sản phẩm của urani bắt neutron và thường thấy ở các quặng urani.[141]

Trái Đất chứa xấp xỉ &0000000000000000.0000001.33×1050 nguyên tử.[142] Mặc dù có dạng nguyên tử tồn tại độc lập như các khí hiếm tồn tại ít, như argon, neon, và heli, 99% khí quyển chứa chủ yếu các nguyên tử dạng kết hợp như phân tử, bao gồm cacbon điôxít CO2 và phân tử hai nguyên tử như ôxy O2 và nitơ N2. Tại bề mặt Trái Đất, lượng khổng lồ các nguyên tử kết hợp theo nhiều dạng, bao gồm nước H2O, muối, silicat và các ôxít. Nguyên tử cũng kết hợp lại thành vật liệu không chứa phân tử rời rạc, bao gồm tinh thể và chất lỏng hoặc kim loại rắn.[143][144] Dạng vật chất rắn nguyên tử này tạo nên mạng lưới tinh thể mà thiếu đi loại đặc biệt của trật tự bị ngắt cỡ nhỏ mà thường gặp ở dạng vật chất phân từ.[145]

Các dạng hiếm và trên lý thuyết

Ảnh mô phỏng 3 chiều về lý thuyết đảo bền xung quanh Z=118 và N=178.

Nguyên tố siêu nặng

Bài chi tiết: Nguyên tố siêu urani

Các đồng vị với số nguyên tử lớn hơn của chì (82) có tính phóng xạ, các nhà vật lý đã đề xuất về sự tồn tại của "đảo bền" cho những nguyên tố có số nguyên tử lớn hơn 103. Những nguyên tố siêu nặng này có hạt nhân tương đối ổn định trong quá trình phân rã.[146] Ứng cử viên cho nguyên tử siêu nặng ổn định đó là unbihexium, có 126 proton và 184 neutron.[147]

Vật chất ngoại lai

Bài chi tiết: Vật chất ngoại lai

Mỗi hạt vật chất đều có dạng tương ứng trên lý thuyết đó là hạt phản vật chất với điện tích trái dấu. Hay hạt positron điện tích dương là phản hạt của electron và phản proton điện tích âm là phản hạt của proton. Khi vật chất và phản vật chất tương ứng gặp nhau chúng lập tức bị hủy thành các tia gamma. Bởi vì lý do này, cùng với sự mất cân bằng giữa lượng vật chất và phản vật chất trong vũ trụ, phản vật chất rất hiếm thấy trong vũ trụ. (Mặc dù nguyên nhân của sự mất cân bằng trên quy mô Vũ trụ chưa được hiểu đầy đủ, một số lý thuyết đã đề xuất ra về sự vi phạm đối xứng CPT trong thời điểm của Vụ nổ lớn.) Và hiện nay chưa có dạng phản vật chất nào tìm thấy tồn tại trong tự nhiên.[148][149] Trong phòng thí nghiệm, năm 1996, trung tâm nghiên cứu hạt hạ nguyên tử CERNGenève đã lần đầu tiên tạo ra được phản hiđrô.[150][151]

Các nhà vật lý cũng tạo ra được những nguyên tử ngoại lai khác bằng cách thay hạt proton, neutron hay electron bằng hạt khác có cùng điện tích. Ví dụ, trong nguyên tử hiđrô hạt electron được thay thế bằng lepton nặng hơn là muon, tạo ra nguyên tử proton-muon. Nguyên tử ngoại lai là một trong những mẫu để các nhà vật lý kiểm chứng các tiên đoán cơ bản của vật lý, như của thuyết điện động lực học lượng tử hay sự biến đổi theo thời gian của các hằng số vật lý.[152][153][154]

Tài liệu tham khảo

WikiPedia: Nguyên_tử http://www.zbp.univie.ac.at/dokumente/einstein2.pd... http://www.oklo.curtin.edu.au/index.cfm http://www.upscale.utoronto.ca/GeneralInterest/Har... http://www.science.uwaterloo.ca/~cchieh/cact/nucte... http://www.britannica.com/EBchecked/topic/41549 http://cerncourier.com/cws/article/cern/28509 http://md1.csa.com/partners/viewrecord.php?request... http://books.google.com/?id=pheL_ubbXD0C&dq http://books.google.com/books?id=-v84Bp-LNNIC&prin... http://books.google.com/books?id=FJMEAAAAYAAJ